服务热线:13511040443、13601196591
设为首页
收藏我们
联系我们
 
  
建筑门窗检测仪
  ZSQ-90漏风量测试仪
  冲击试验机
  MCD门窗气密水密抗风压检测设备
  MCDX门窗现场气密检测仪
  建筑门窗隔声性能检测设备
  BHR建筑幕门窗保温性能检测设备
  门窗力学性能试验机
  XJL-落锤式冲击试验机
  ZSQ-89防火阀漏风量测试仪
  房屋气密性检测仪
高强螺栓检测仪
  滑移系数检测仪
  CSZ-500ST电动扳手复合标定仪
  自动高强螺栓扭矩系数检测仪
  CSZ-500D自动型高强螺栓检测仪
  CSZ-500S高强螺栓检测仪
  CSF-2抗滑移系数检测仪
  CSZ-500SN高强螺栓检测仪
  CSF-2N抗滑移系数高强螺栓扭紧系统
  CSF-2S抗滑移系数高强螺栓扭紧机
  CSF-2D型抗滑移系数高强螺栓扭紧机
  CSD-30扭剪型高强螺栓电动扳手
  CSN-2000预置式数显扭矩板子
  CSZ-2500A高强螺栓扭矩系数试验机
  高强螺栓楔负载
平板导热仪
  TPMBE-300平板导热仪
  TPMBE-600平板导热仪
  TPMBE-300II双平板导热仪
中空玻璃露点仪
  光畸变测定仪
  ZDX-Ⅲ中空玻璃露点仪
  ZDL-Ⅲ中空玻璃露点仪
建筑幕墙检测仪
  幕墙四性检测设备
  外墙外保温抗风压性能检测设备
  外墙外保温耐侯性能检测设备
TR70B建筑围护结构热工性能现场检测设备
  TR70B墙体传热系数检测仪
  TR70B建筑围护结构检测仪
  TR70B建筑热工热流检测仪
  防护热箱
  防护冷箱
密封胶相容性试验箱
  标准挤出器
  JGJ-1密封胶相容性试验箱
  GB/T13477-2002 GB16776-2005实验器具箱清单
水紫外辐照试验箱
  SZW-3水紫外辐照试验箱
矿棉岩棉检测仪
  XZQ-02纤维渣球含量测试仪
漏风量测试仪
  ZSQ-90漏风量测试仪
标准挤出器
  ISO标准挤出器
AL-08A型智能门窗综合机械性能试验机
  触摸屏扭转试验机
  钢筋弯曲试验机
硬度计/便携式布氏硬度计/便携式里氏硬度计/便携式肖氏硬度计/便携式维氏硬度计
  HT300里氏硬度计
  TH3200自动洛氏硬度计
  巴氏硬度计
  LX-A橡胶硬度计
  W-20韦氏硬度计
  SH-21超声波硬度计
  187.5布洛维硬度计
  HT300S轧辊硬度计
  HS-19A肖氏硬度计
  HV-1000A显微维氏硬度计
  HV-5维氏硬度计
  HB-3000布氏硬度计
  HR-150A洛氏硬度计
  光谱仪
  硬度计配件
扭剪型电动扳手
  扭剪型电动扳手(小型)
  CSN-2000电动扳手
  定扭矩电动扳手(内置控制系统)
  定扭矩电动扳手(外置控制系统)
建筑节能热工检测设备
  HE采暖散热器散热量检测设备
电线电缆垂直燃烧试验机
  水平垂直燃烧试验试验机
  CZRS-CD电线电缆垂直燃烧试验机
KUD750超声波探伤仪
  KL-300超声波测厚仪
  KT30粗糙度仪
粗糙度仪/光洁度仪/光泽度仪
  粗糙度仪平台
  MN60光泽度仪
  泰勒25粗糙度仪
  三丰210粗糙度仪
  马尔M300C/PS1粗糙度仪
  TR100粗糙度仪
  TR200粗糙度仪
UT200超声波测厚仪
TUD300超声波探伤仪
FT220涂层测厚仪
电子万能试验机
  WDW-20电子万能试验机
TE红外热像仪
红外测温仪PT120/PT300/PT150/TI120
  PT300红外测温仪
测振仪VM-63A
环保分析仪器
激光测距仪
  A2激光测距仪
现场金相显微镜XH500
GWB-200JA引伸计标定仪
JAC-3电火花检测仪
球磨机
建筑玻璃遮阳系数检测仪
  可见光透射比测试仪
  准直望远镜
  玻璃碎片曝光机
  UV3000SE遮阳系数检测系统
  Lamda紫外可见近红外分光光度计
建筑材料燃烧试验设备
建筑用塑料管材检测仪
  落球冲击试验机
钢筋混凝土检测仪
水泥检测仪
  CR2015水泥铬含量测定仪
  BL2006-8X水泥组分测定仪
  FC-2005水泥游离氧化钙快速测定仪
  BL05-1水泥中二氧化碳测定仪
  CCQTC2006-4氯离子测定仪
风量罩
  SD-01风量罩
  DP-CALC5815/5825 微差压
  EBT720/8375风量罩
  美国TSI数字式风速计9515/9525
  风速仪
混凝土回弹仪
钢结构检测仪
公路桥梁检测设备
应变检测仪
手持式记录仪
大体积混凝土测温仪
数显语音回弹仪
大气采样器
试验箱
  环境试验设备
锚杆拉拔仪、拉拔仪
  HC-30锚杆拉拔仪
基桩检测系列
  超声波成孔质量检测仪
  多跨孔超声波自动巡测仪
  基桩超声波CT成像测试仪
  静载荷测试仪
  基桩高应变检测仪
  基桩低应变检测仪
防雷检测设备
  接地电阻测试仪
水泥混凝土恒温恒湿养护室
交通水利隧道检测仪
  新闻中心

通过创新幕墙理念实现节能


发布日期:[2015-06-03] 共阅[779]次

几世纪以来,建筑的形状和类型都需适应当地的气候环境。多亏了机械空调技术的发展,在20世纪,建筑外立面设计终于可以不受当地环境及各参数的影响。然而这种发展也带来了代价,不仅造成建筑营运成本和初始成本价格攀升,还增加了对复合技术的依赖和对原材料的需求。在过去30年内,发达国家与发展中国家的重点城市无一不暴露着这个问题重重的趋势,而城市建筑构造也已经开始影响周边及郊区。在20世纪90年代中期,欧洲中发展起一股不同的潮流,那里的人愈来愈意识到建筑幕墙不仅需要具备出众的外观,还需辅助建筑营运,让建筑拥有持久的生命力。因此,建筑外立面成为室内舒适程度和营运费用开销的关键。幕墙不仅与建筑机械系统的操作成本息息相关,还可决定一栋建筑是否需要或有多需要这些系统。

        挑战
        如果我们从更远的角度审视过去3O年,很明显,建筑业使现有自然资源和能源大幅度减少。多方面因素造成了这个性的局面,包括人口增长和生产力膨胀,工业化和城市化,这在提高生活水平的同时要求更大的人均居住面积;另外人们对居住质量和舒适程度期望更高。这些需求导致消耗大量—次资源,包括煤,原油,天然气和铀,这些资源都是有限的。
        愈来愈多的市场不断增加对可持续发展的关注G从生态方面而言,可持续发展包括保护自然环境,关心自然资源。初焦点集中在减少—次能源的使用,后来又增加了保护水资源,排除或限制污染。长时间以来,对“初始成本"的关注主导着人们的思维;而现今,优化投资成本及其带来的营运费用成为了标准,至少在中欧如此。另外,可持续发展的社会性与文化性引起人们愈来愈多的重视,如建筑的外部设计,但更重要的是建筑的使用方式以及它们提供用户的空间质量。建筑业的可持续发展需包栝上面提到的所有方面.
        节能幕墙
        能效战略目标是将建筑使用的能源、建造和营运时耗费的材料、时间及开销降到低。能效是建筑设计及规划的参数之一。一个实施能效理念的关键单元是建筑外立面系统一幕墙。它需要在建筑整个寿命期保障高的能源使用效益,这不仅要求建筑外立面的概念和材料符合能源效益,还需在设计,建造和营运环节中发挥节能。
        增加能源使用效益意味着减少对能源的浪费。然而这并不以牺牲舒适为代价。人类活动和福利与舒适程度息息相关。从简单的传统角度而言,节能通常与舒适程度下降相连。但节能建筑的特征就是以低的能源消耗保证高程度的舒适。周围环境的舒适程度直接影响人们的工作表现和健康水平。但需要注意的是,从建筑不完善的解决方案中满足巨大能源需求并不会自然而然地增加舒适。借助节能的建筑外立面可以平衡外界气候环境与内部舒适水平的差异。有了这些解决方案不同气候环境造起的差异将减小,甚至*消除。
        在温带气候区,幕墙重要的功能即为抵挡风雨,适当隔热。这要求幕墙扇框,玻璃及不透明区域的整体优化。隔热性越好的幕墙,越重视通风造成的热损失问题。从根本上说,应避免无控制的缝隙通风。不理想的运作流程不仅大幅度提高营运成本,而且还导致室内舒适程度无法让人接受。有必要指出建筑用户及营运者掌握的知识,也就是我们所谓的营运能力,对于幕墙节能具有愈来愈重大的意义。而创新的建筑理念如果仅停留在理论层面,一不留神也会败下阵来。而佳的解决方案便是由需求推动的电动可控窗扇通风。
        然而,优化能源损耗量不该带来热损失。通过使用被动的太阳能,建筑本身就成为了太阳能收集器。透明和半透明的窗与幕墙表面摄取太阳能,转化为外墙或围墙表面的热量。在拥有大面积玻璃外表,内部承受高负荷的建筑中,如果不采取额外的机械措施,夏季太阳辐射会过高。室外遮阳系统大大减少太阳辐射及由此生成的热量。另—方面,光照系统平均分配进入室内的日光并优化日光质量。
        适应型幕墙
        兼顾节能和舒适的幕墙能对用户的舒适需求做出调节并改变外部条件,只在情况下才需使用建筑技术设备。从根本上说,这意味着建筑结构与相应的幕墙结合,适应其地理位置及使用需求适应型建筑外立面部件有能力对非持续性的多变外部环境做出反应,这在很多情况下是可以预测或计算的,如每年或每日出现的气象波动(如太阳高度角)或是建筑营运的次数。然而“适应型"还须包括不可预测的天气或营运因素,如多变的云层和临时用户。早在1981年,英国建筑师迈克·戴维斯就提出了“多价墙"概念,即通过薄薄的功能层控制穿过建筑外立面的各种能源流。这个概念是指未来的建筑外立面会自动适应外部气候环境。自那时起,许多研究人员都在研发可以控制光,能源,通风和声音通量的半自控材料v其中一个研究目的是发明可控制的应用型玻璃。多项技术已经实现通过电光或变色玻璃控制分配日光的穿透量。另外还开发出彩光,热色及热致变色玻璃种类。
        缓冲区
        如果设计师拓宽系统设计界限,也可起到增加能源效益的作用。例如,可以在毗邻的建筑之间设计一个大的防风雨缓冲区,类似中庭或是林荫道一样的区域。这些缓冲区可配备一些系统以提供普通的热环境,使每年空气温度在15至30℃之间,不受外部气候因素影响,为了能用少的能源达到这—目标,必须通过一个中央理系统控制建筑外立面的可视光穿透量,生成的太阳能热量和自然通风水平。缓冲区内立面以及房顶墙面就相对简单,不用对风荷载或暴雨多加注意。这样一个气候外立面也增加临近建筑的利用率。理想状态下,用户可单独控制内立面,不会消耗过多能源。但内立面的声音控制能力(“ 降噪")和热量存储能力(“ 热缓冲")相当重要∪这些参数由设计师定义并优化,一般在整个建筑寿命期都不会更改。
        在幕墙内积极使用太阳能
        如果—个建筑外立面优化了能源效益,可以建议利用可再生能源资源去平衡剩余的能源消耗。就幕墙而言,有两种主要的太阳能资源可供积极利用:光电和光热。通过按照不同原理工作的各种现有系统,如空气或水收集器,热吸收器或热泵,可直接利用太阳能辐射进行空间采暖或温水使用。这些系统和另外的光热存储系统一起运行可增加功率。尤其是对办公楼而言,借助光热收集器来生成冷气(冷冻器/制冷机)引起人们极大的兴趣。原理很简单:制冷需求大时太阳会生成多的热量来制冷。这当然是能源供求之间的平衡。
        整合进建筑的光伏系统(BIPVs)现在早已过了试验阶段。目前,光伏系统可用于幕墙和屋顶的固定型和移动型遮阳系统,同时,这具体解决了排线和插座问题,提供了系统。
        将电能存储介质全部连成一体也许可以解决电能生成和消耗频率之间经常出现的差异。另外还推荐利用DC—AC转换器将电能生成和电载荷连成一体,且不会损失电能。这些基于电学的创新概念也融于各个建筑系统和公共交通系统。地区的智能电网能在电负荷高峰和太阳能过剩间达到平衡。
        总结
        在过去30年内,人口激增,生产力膨胀,导致许多地区工业化和城市化失衡。人们对居住面积和舒适程度的更大需求也刺激了房地产的增长,终使资源供应有限。今天,的有限石油资源仍然是能源的主要来源。在供不应求的情况下,越来越多的国家发现可持续发展的重要性,并力求将不必要的资源使用降至低并优化效益。对于建筑业而言,带起这一趋势的*建筑外立面系统,幕墙。数年来,人们不仅开发了极其的幕墙系统,还在幕墙设计和构造上运用了更多智能和节能手段。今天,现代化幕墙系统经常包括动态的适应型部件,这些部件能减少气候的负面影响(降水,刮风,日照,炎热,寒冷,湿气及噪声),同时能为建筑采暖,光照和通风收集所需(阳光,日光,室外空气)。关键要了解必须根据地区,气候和时区设计不同的幕墙,应用不同的营运手段,这样能成功优化上面提到的几个方面。幕墙创新意味着将太阳能光热和光电系统整合进建筑外立面。幕墙成为可再生能源的“收集表面"。


点击这里给我发消息
点击这里给我发消息
· 建筑节能检测设备网
· 环保仪器网
-->返回首页
 
北京时代新天测控技术有限公司 版权所有 总访问量:1419466 地址:厂址:北京市通州区宋庄开发区大兴庄6号 邮编:101100
电话:010-69552791 传真:010-58857461 手机:13601196591 联系人:杨先生 邮箱:642616556@qq。com
GoogleSitemap 网址:www.yingduji1.com 技术支持:环保在线 管理登陆 ICP备案号:京ICP备11031123号-3京公网安备11011202001471号

环保在线

推荐收藏该企业网站